Photoelectron Spectra of 1,2-Diphenylcyclopropene, 2,3-Diphenylcyclopropenone, 2,3-Diphenylcyclopropenethione, 2,3-Diphenylthiirene 1-Oxide, and *cis*-Stilbene. An Experimental Verification of Conjugative and Inductive Interactions¹

Claus Müller, Armin Schweig,* and Hans Vermeer¹

Contribution from the Fachbereich Physikalische Chemie, Universität Marburg, D-3550 Marburg/Lahn, West Germany. Received November 22, 1976

Abstract: The photoelectron spectra of the title compounds are interpreted and analyzed in terms of inductive and conjugative interactions between subunits M (CH₂, C=O, C=S, S=O, and SO₂) and PhC=CPh. Inductive and conjugative abilities of M derived in this way are compared to corresponding theoretical data obtained using the "cutoff" procedure. The same theoretical method is used to calculate aromaticities and π charge transfers. From these results and corresponding data derived from the unsubstituted species cyclopropene, cyclopropenone, cyclopropenethione, thirene 1-oxide, as well as thirene, 1,1-dioxide it is concluded that the diphenyl-substituted molecules are likely similar aromatic compounds as their parent systems are.

Introduction

In a preceding paper² we analyzed the various sorts of interactions between M (CH₂, C=O, C=S, S=O, and SO₂) and the C=C unit in the intriguing series of molecules cyclopropene (1), cyclopropenone (2), cyclopropenethione (3), thiirene 1-oxide (4), and thiirene 1,1-dioxide (5). We further

considered the consequences (as, e.g., π charge transfers, aromaticities, and geometries) of these interactions in terms of inductive and conjugative effects A-E defined as follows. Based on the "cutoff" procedure³⁻¹⁶ we defined the energetic effect of M on the π orbital of the C=C unit in the π interrupted case as the inductive effect of M (i.e., effect A). Passing over from the π interrupted to the π coupled case orbitals of appropriate symmetry of both subunits start interacting to form molecular π orbitals. Simplifying here we distinguished three cases: interaction between the occupied $\pi_{C=C}$ orbital with occupied orbitals of M (leading to an energetic effect that is unfavorable and designated as effect B), interaction between the filled $\pi_{C=C}$ orbital and vacant orbitals of M (leading to a gain in energy and abbreviated as effect C), and finally interaction between the vacant $\pi^*_{C=C}$ orbital and filled orbitals of M (which again is energetically favorable and is designated as effect D). Additionally, if a sizable π charge transfer in either direction (from C=C to M or vice versa) occurs due to effects C and D, respectively, secondary changes in the orbital energies as a result of the π charge transfer become possible (i.e., effect E).

Within the series of molecules 1-5 only 1 and 2 are existing compounds. Our present intention therefore is to seek experimental confirmation of the predicted inductive and conjugative abilities of M by use of the photoelectron (PE) spectra of the corresponding diphenyl derivatives 6-10. These molecules have a basic advantage over 1-5 insofar as the π systems of these molecules possess π orbitals which, for symmetry reasons, cannot couple with π orbitals of M so that their energy change reflects the purely inductive influence of M. Thus an approx-

imate separation of the inductive from the conjugative effects can be achieved for 6-10 which is not possible for 1-5.

In order to estimate the modifications of the inductive and conjugative abilities of M caused by the phenyl substituents we will present theoretical results using the "cutoff" method for 6-10 (applied in the same way as for $1-5^2$) and compare them with the respective experimental data.

Results and Discussion

Figure 1 displays the photoelectron spectra of 1,2-diphenylcyclopropene (6), 2,3-diphenylcyclopropenone (7), 2,3diphenylcyclopropenethione (8), 2,3-diphenylthiirene 1-oxide (9), and *cis*-stilbene (11).¹⁷ Since 6-9 consist of PhC=CPh and M units the spectra of these compounds exhibit the band structure of 11 modified by inductive (effect A) and conju-

11

gative (effects B-E) interactions between the respective subunits and further modified by additional bands due to ionizations from other high-lying orbitals not involved in the π conjugation process.

cis-Stilbene (11). The PE spectrum of 11 has been previously analyzed.¹⁸ It shows three bands before the σ onset with the ratio of intensities 1.05:3:0.97. The corresponding ionizations 1-5 were assigned to the five π orbitals π_1 - π_5 shown in Figure 2. These orbitals can be understood as linear combinations of C=C and π benzene orbitals. π_2 and π_3 are nearly degenerate.

cis-Stilbene is nonplanar with the phenyl rings rotated around the C-C bonds by $43.2^{\circ}.^{19}$ In contrast to that the PhC=CPh part in 6-9 is planar. Therefore, before the influ-

© 1978 American Chemical Society

Figure 1. Photoelectron spectra of *cis*-stilbene, 1,2-diphenylcyclopropene, 2,3-diphenylcyclopropenone, 2,3-diphenylcyclopropenethione, and 2,3-diphenylthiirene 1-oxide. For the assignments and measured vertical ionization potentials, see Figure 3.

Figure 2. Highest occupied π orbitals of *cis*-stilbene. The orbitals are classified with respect to the symmetry species of point group C_{2v} and are further distinguished by numbering them (from 1 to 5 in order of decreasing energy).

ences of M on $\pi_1 - \pi_5$ are to be quantified by comparing the ionizations of 11 with those of 6-9 we must correct the measured ionizations of 11 for the effects on $\pi_1 - \pi_5$ that the change in geometry produces. The effects were estimated from MINDO/3,²⁰ CNDO/S,^{21,22} and MNDO²³ calculations for the planar (symmetry $C_{2\nu}$) and nonplanar (symmetry C_2) forms of *cis*-stilbene. In accordance with what is expected on the orbital structures of $\pi_1 - \pi_5$ all three valence electron methods agree in predicting 0.2 eV destabilization for π_1 and 0.15 and 0.3 eV stabilization for π_4 and π_5 , respectively, and finally a tiny stabilization for the nearly degenerate π_2 and π_3 (0.05-0.1 eV) when passing over to the planar form. Both the measured (for the C_2 form) and the corrected (belonging to the $C_{2\nu}$ form) ionizations of *cis*-stilbene are gathered on the

Figure 3. Measured ionizations correlation diagram for *cis*-stilbene (point group C_2), fictional planar *cis*-stilbene (point group $C_{2\nu}$), 1,2-diphenylcyclopropene, 2,3-diphenylcyclopropenone, 2,3-diphenylcyclopropenethione, and 2,3-diphenylthiirene 1-oxide. The ionizations are labeled according to the designation of orbitals from which they arise. The numbers shown above the levels are vertical ionization potentials (in eV). The good agreement of the present diagram with the calculated Koopmans' ionizations correlation diagram of Figure 4 as well as the examination of Koopmans' ionizations by the configuration interaction (C1) method in ref 25-27 suggests that the present ionizations diagram may also be considered as an experimental correlation diagram for the highest occupied orbitals of the respective molecules. Consult text for details of estimating the ionization potentials for planar *cis*-stilbene.

Figure 4. Calculated (using the CNDO/S method in conjunction with an spd basis) Koopmans' ionizations correlation diagram (identical with the orbital energy correlation diagram for the highest occupied orbitals) of *cis*-stilbene (point group C_2), fictional planar *cis*-stilbene (point group C_{2c}). 1,2-diphenylcyclopropene, 2,3-diphenylcyclopropenene, 2,3-diphenylcyclopropenene, 2,3-diphenylthiirene 1-oxide, and 2,3-diphenylthiirene 1,1-dioxide. The numbers above the levels are vertical ionization potentials (or the negative of orbital energies in eV).

left-hand side of the measured ionization correlation diagram of Figure 3. Figure 4 displays the corresponding CNDO/S ionizations.²⁴⁻²⁷ Our next problem is to relate the ionizations of **6-9** to the ionizations of the hypothetical planar form of *cis*-stilbene. Therefrom we can derive information about the interactions between PhC=CPh and M in **6-9**.

1,2-Diphenylcyclopropene (6). The CH₂ part of 6 possesses neither lone pairs nor other high-lying σ orbitals. Therefore we would expect that, apart from the five π ionizations of the PhC=CPh unit, no additional ionizations that are charac-

teristic for CH₂ would arise in the π ionization region (i.e., the ionization region of *cis*-stilbene). Nonetheless, considering the PE spectrum of **6** and the ratio of intensities of its signals, there is one further ionization among the expected five π ionizations. This ionization is, however, understandable on the basis of the PE data of cyclopropene where the first σ ionization occurs at 10.89 eV.²⁸ This ionization is characteristic for the σ structure of the three-membered ring (for the orbital that is ionized see **12** below) and occurs for obvious reasons only in cyclopropene at such a high energy (note that, in cyclopropenone, the corresponding ionization is observed at 13.63 eV²⁹).

The assignment of the six ionizations observed in the PE spectrum of 6 is based on the following arguments. From the structure of the five π orbitals shown in Figure 2, appreciable conjugative interactions can only be expected between π_{CH_2} and $\pi^*_{CH_2}$ and π_1 and π_5 . From previous results² we have further to expect that the interaction with π_{CH_2} (effect B) predominates. Therefrom we would predict that, for 6, the ionizations corresponding to π_1 and π_5 occur at lower energy than in planar cis-stilbene while the π_2 - π_4 ionizations should be found at practically the same energy as in the fictional reference system. The three-membered ring σ ionization (symbolized as σ_{C-C} in Figure 3 and elsewhere) should occur at somewhat higher energy for 6 (because of interaction with σ_{benzene} orbitals) than for cyclopropene (1) (i.e., 10.89 eV, see above). All these expectations are met as Figure 3 shows. It must be stressed, however, that the sequence of the σ_{C-C} and π_5 ionizations remains uncertain. The CNDO/S calculations place σ_{C-C} above π_5 . However, qualitative arguments according to which the conjugative interaction between π_5 and $\pi_{\rm CH}$, should be more efficient than between π_1 and $\pi_{\rm CH}$, point to the opposite direction. Nonetheless the overall agreement between the measured (Figure 3) and calculated (Figure 4) ionizations for 1,2-diphenylcyclopropene and also relative to C_2 and C_{2v} cis-stilbene is quite impressive.²⁴⁻²⁷

Most important, the results of Figure 3 (in full agreement with the theoretical results of Figure 4) indicate that the sum of conjugative (hyperconjugative) interactions between π_1 and π_{CH_2} and $\pi^*_{CH_2}$ (sum of effects B and C) is 0.4 eV. It is thus a bit smaller than the corresponding value (0.6 eV)⁹ previously derived for 1,2-dimethylcyclopropene in accordance with what is expected on the relative energies of the $\pi_{C=C}$ orbital of 1,2-dimethylcyclopropene and π_1 of **6**.

2,3-Diphenylcyclopropenone (7). The band structure of the PE spectrum of 7 is very similar to that of cis-stilbene with one additional band in the range of the first signal. The intensity ratio of the three signals is 2.09:3:0.98. From our previous experience⁸ with the oxygen lone pair (n_0) ionizations for 2,3-di-tert-butylcyclopropenone and trans-2,3-di-tert-butylcyclopropanone (13 and 14 below) one of the first two bands in the PE spectrum of 7 must be assigned to the n_0 orbital. The CNDO/S calculations place π_1 above no but CNDO/S CI calculations made in order to estimate the Koopmans defects suggest the reversed sequence.²⁴⁻²⁷ Irrespective of the exact ordering, however, an no ionization around 8.30 eV reveals that the no orbital in the three-membered ring systems is drastically destabilized with respect to the same orbital in aliphatic ketones (e.g., 9.71 eV^{30} in acetone and 9.21 eV^{31} in methyl tert-butyl ketone). The observed destabilization is partly due

to a strong interaction with the σ system of the ring and partly a consequence of the secondary π charge transfer from PhC=CPh to C=O (effect E).

The location of the π_1 ionization for 7 relative to the same ionization for planar cis-stilbene (Figure 3) indicates that, for 7, the stabilizing influences exerted by C=O on π_1 (i.e., effects A, C, D) predominate. For symmetry reasons the π_2 and π_4 orbitals can only experience inductive stabilizations so that we can use their energy changes as a measure of the pure inductive effect (effect A). Since, however, the $\pi_1 - \pi_5$ orbitals (Figure 2) lead to rather different electronic distributions the inductive influences of C=O on $\pi_1 - \pi_5$ might differ to a certain extent. This is indeed the case as the results of CNDO/2,³² CNDO/S, MINDO/3, and MNDO calculations with and without conjugative interruption indicate. All methods applied agree that the inductive stabilizations of π_1 and π_5 are the largest ones. As compared to that value the π_4 stabilization amounts to 70% and the π_2 and π_3 stabilization to 60%. It is further interesting to mention that the found graduation of effects is valid for all other groups studied.

If we modify the measured (Figure 3) inductive effects for π_2 and π_4 according to the aforementioned orbital sensitivity scale we arrive at an inductive stabilization of -0.75 eV for π_1 and π_5 . This value is in good agreement with the inductive effects of C=O in substituted cyclopentadienones⁸ and tropone⁵ (cf. 15-17). Relying on this inductive stabilization (-0.75 eV),

the sum of stabilizing (interaction of π_1 with $\pi^*_{C=0}$, i.e., effect C) and destabilizing (interaction of π_1 with $\pi_{C=0}$, i.e., effect B) conjugative interactions does not exceed 0.1-0.35 eV (depending on band 1 or 2 in the PE spectrum of 7 being assigned to π_1). The derived value is within the limits of findings⁹ for other cyclopropenone systems (cf. 18 and 20 with 19 below; for a more detailed discussion, however, see below).

2,3-Diphenylcyclopropenethione (8). At first glance the PE spectrum of **8** appears to be quite different from the reference

spectrum of *cis*-stilbene (Figure 1). It exhibits three signals with an intensity ratio of 1:1.02:4.05. In addition there is a fourth signal in the onset of the σ continuum.

These observed differences are due to the higher energies of $\pi_{C=S}$ and n_S orbitals than of their oxygen counterparts (e.g., $\pi_{C=0}$ of acetone at 12.62 eV,³⁰ $\pi_{C=S}$ of thioacetone at 10.46 eV;³⁴ n_O of acetone at 9.72 eV³⁰ and n_S of thioacetone at 8.60 eV^{34}). In addition, the n_S ionization of **8** is (in analogy to the respective oxygen cases) expected to occur at considerably lower energy than in aliphatic compounds (owing to σ interactions and π charge transfer from PhC=CPh to C=S).

Keeping these facts in mind the interpretation of the PE spectrum of 8 is possible. Unambiguously, both from the shape of band 1 and the vibrational fine structure of band 2 (1291 cm^{-1} , C=C vibration in the molecule 1785 cm^{-1} 35) bands 1 and 2 must be assigned to the n_s and π_1 orbitals, respectively. The relative intensity of the second signal indicates that the $\pi_{C=S}$ ionization is additionally located in the π_{2} - π_{4} ionization region. The sequence of $\pi_{C=S}$ and π_4 ionizations cannot be inferred from the experimental data.

Following the same procedure as described above for 2,3diphenylcyclopropenone (7) we derive, from the observed changes in the π_2 and π_3 ionization energies relative to those of planar cis-stilbene, an inductive effect of C=S on π_1 of -0.6eV (effect A). With this inductive effect we estimate, from the π_1 ionization energy of 8 for the sum of stabilizing (interaction with $\pi^*_{C=S}$, effect C) and destabilizing (interaction with $\pi_{C=S}$, effect B) conjugative contributions, a value of 0.7 eV.

It is worth mentioning that all assignments and conclusions derived above for 7 and 8 are additionally corroborated by the quite impressive agreement between the calculated (Figure 4) and measured (Figure 3) ionization energies for these molecules.24-27

2,3-Diphenylthiirene 1-Oxide (9). The PE spectrum of 9 (Figure 1) exhibits two additional bands (2 and 3) in the π_1 - π_5 ionization region. We assign these bands, relying on the CNDO/S calculations of Figure 4, to the n_S and $\pi_{S=O}$ orbitals.² This assignment gets support from the shape of the second intense signal (comprising bands 2-6) in the PE spectrum of 9 (Figure 1) where—as it must be expected from the near degeneracy of the π_2 and π_3 orbitals (cf. Figure 2)—bands 4 and 5 form the most intense peak and therefore have to be assigned to these orbitals.

According to a preceding analysis² of orbital interactions for thiirene 1-oxide we would essentially expect here conjugative interactions between π_1 and π_5 and n_5 on one hand and π_4 and $\pi_{S=0}$ on the other. π_2 and π_3 are then appropriate for estimating the inductive influence of S=O. From the changes of the corresponding ionizations (relative to the corresponding ionizations of planar *cis*-stilbene) we evaluate for the inductive stabilizations of π_1 and $\pi_5 - 0.65$ eV. Based on this inductive effect the conjugative interactions (i.e., the sum of effects B and C) amounts to 0.25 eV for π_1 .

2,3-Diphenylthiirene 1,1-Dioxide (10). We did not succeed in recording the PE spectrum of 10 since this molecule quantitatively decomposed into diphenylacetylene during the evaporation process. This is in agreement with mass spectral findings.36

Comparison between Calculated and Experimental Results and Conclusion. Figure 5 gathers the calculated CNDO/2 inductive effects of M on π_1 (effect A), the corresponding experimental quantities as derived in the preceding PE spectral study, the calculated CNDO/S conjugative effect of M on π_1 (effects B plus C), and the corresponding experimental quantities as again obtained from the preceding PE spectral data. In both cases, the calculated and experimental results are-in view of the various approximations involved-in a satisfactory agreement.37

Figure 5. Calculated CNDO/2 inductive (A) and CNDO/S conjugative (C) effects of M (M = CH₂, C=O, C=S, S=O, and SO₂) on the π_1 orbital of the PhC=CPh subunit of 1,2-diphenylcyclopropene, 2,3-diphenylcyclopropenone. 2.3-diphenylcyclopropenethione, 2,3-diphenylthiirene 1-oxide, and 2,3-diphenylthiirene 1,1-dioxide and the corresponding experimental (except for thirene 1.1-dioxide) effects (B and D) as derived by PE spectroscopy.

We further note from the data of Figure 5 that the inductive effects of M on π_1 are quite similar to the corresponding effects of M on $\pi_{C=C}$ in the parent compounds 1-5.² This result confirms our previous experience that the inductive effects of groupings M are surprisingly independent of the particular π orbital that they exert their effect on. However, we realize from Figure 5 and previous results² that the conjugative influence of M on π_1 is quite different from the corresponding influence of M on $\pi_{C=C}$ in the parent compounds 1-5. This outcome is not surprising because the π orbital structure of PhC=CPh (cf. Figure 2; remember particularly that there are two π orbitals, π_1 and π_5 , that can conjugate with π orbitals of M) and the energies of π_1 and π_5 relative to the relevant orbitals of M are quite different from what is calculated for the unsubstituted molecules 1-5. Nonetheless, the calculations further show that the amounts of π charge transfers in 6-10³⁸ are very similar to those in $1-5^2$ The same is found for the aromaticities of both series of compounds (i.e., $1-5^2$ and $6-10^{39}$). From all that we have to conclude that the diphenyl substituted molecules 6-10 are likely similar aromatic compounds as their parent systems 1-5 are.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. The calculations were carried out using the TR 440 computer at the Rechenzentrum der Universität Marburg and the IBM 370/168 computer at the Rechenzentrum der TH Darmstadt. Samples of 1,2-diphenylcyclopropene (6), 2,3diphenylcyclopropenone (7), 2,3-diphenylcyclopropenethione (8), 2,3-diphenylthiirene 1-oxide (9), and 2,3-diphenylthiirene 1,1-dioxide (10) have been provided by M. A. Bastide and R. A. Fiato, Gainesville, Fla. (6), F. Dunkelblum, Jerusalem (7), J. W. Lown, Edmonton (8), and L. A. Carpino, Amherst, Mass. (9 and 10), respectively.

References and Notes

- (1) Part 70 of "Theory and Application of Photoelectron Spectroscopy". Part 69: C. Müller, A. Schweig, M. P. Cava, and M. V. Lakshmikantham, J. Am. Chem. Soc., 98, 7187 (1976).
- H.-L. Hase, C. Muller, and A. Schweig, *Tetrahedron*, **34**, 2983 (1978).
 N. C. Baird, *Theor. Chim. Acta*, **16**, 239 (1970).
- H.-L. Hase and A. Schweig, Tetrahedron, 29, 1759 (1973).
- (5) C. Müller, A. Schweig, and H. Vermeer, Angew. Chem., 86, 275 (1974);
- Angew. Chem., Int. Ed. Engl., 13, 273 (1974). (6) H. Schmidt, A. Schweig, R. W. Hoffmann, and H. Kurz, Tetrahedron Lett., 1953 (1974).
- H. Schmidt, A. Schweig, and A. Krebs, Tetrahedron Lett., 1471 (1974).
- W. Schäfer, A. Schweig, G. Maier, T. Sayrac, and J. K. Crandall, Tetrahedron (8)
- Lett., 1213 (1974). C. Müller, A. Schweig, and H. Vermeer, J. Am. Chem. Soc., **97**, 982 (9)
- (1975). (10) H. Schmidt, A. Schweig, F. Mathey, and G. Müller, Tetrahedron, 31, 1287 (1975).
- (11) W. Schäfer, A. Schweig, and F. Mathey, J. Am. Chem. Soc., 98, 407 (1976).
- (12)W. Schäfer, A. Schweig, K. Dimroth, and H. Kanter, J. Am. Chem. Soc., 98, 4410 (1976). (13) H. Schmidt and A. Schweig, Z. Naturforsch. A, 31, 215 (1976).
- H. Schmidt, A. Schweig, and H. Vermeer, J. Mol. Struct., 37, 93 (1977).
- (15) H. Schmidt, A. Schweig, A. G. Anastassiou, and J. C. Wetzel, Tetrahedron,

32, 2239 (1976).

- (16) C. Müller, A. Schweig, M. P. Cava, and M. V. Lashmikantham, J. Am. Chem. Soc., 98, 7187 (1976).
- (17) The photoelectron spectra have been recorded on a Perkin-Elmer PS-16 spectrometer T. Kobayashi, K. Yokota, and S. Nagakura, Bull. Chem. Soc. Jpn., 48, 412 (18)
- (1975). (19) M. Traettenberg and E. B. Frantsen, J. Mol. Struct., 26, 69 (1975)
- (20) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1285 (1975).
- (21) H. H. Jaffé, Acc. Chem. Res., 2, 136 (1969), and references cited therein.
- (22) K.-W. Schulte and A. Schweig, Theor. Chim. Acta, 33, 19 (1974).
- (23) M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
 (24) The ionization levels depicted in Figure 4 are Koopmans' ionization levels relying on Koopmans' theorem: T. Koopmans, *Physica* (*Utrecht*), 1, 104 (1934). We checked the Koopmans' results using a recently developed CI approach^{25–27} in two cases: for 2,3-diphenylcyclopropenone (7) and 2,3-diphenylthiirene 1-oxide (9). Both cases merit special attention because of the closely spaced Koopmans' lone pair and π ionizations (π_1 and n_0 for 7 and $\pi_{s=0}$ and n_s for 9). For these ionizations we find n_0 followed by π_1 (i.e., sequence reversal) for 7 and $\pi_{s=0}$ followed by n_s for 9 (i.e., no sequence reversal).
- (25) G. Lauer, K.-W. Schulte, and A. Schweig, Chem. Phys. Lett., 32, 163 (1975)
- (26) G. Lauer, W. Schäfer, and A. Schweig, Chem. Phys. Lett., 33, 312 (1975).
- (27) H.-L. Hase, G. Lauer, K.-W. Schulte, and A. Schweig, Theor. Chim. Acta,

- 48, 47 (1978). M. B. Robin, C. R. Brundle, N. A. Keubler, G. B. Ellison, and K. B. Wiberg, (28) J. Chem. Phys., 57, 1758 (1972).
- (29)W. R. Harshbarger, N. A. Kuebler, and M. B. Robin, J. Chem. Phys., 60, 345 (1974).
- (30) H. Ogata, J. Kitayama, M. Koto, S. Kojima, Y. Nihu, and H. Kamada, Bull. Chem. Soc. Jpn., 47, 958 (1974). (31) W.-C. Tam, D. Yee, and C. E. Brion, J. Electron Spectrosc. Relat. Phenom.,
- 4, 77 (1974). (32)
- J. A. Pople and D. L. Beveridge, "Approximate Molecular Orbital Theory", McGraw-Hill, New York, N.Y., 1970. Y. Nakamo, S. Saito, and Y. Morino, *Bull. Chem. Soc. Jpn.*, **43**, 368 (33) (1970)
- (34)H. W. Kroto, B. M. Landsberg, R. J. Suffolk, and A. Vodden, Chem. Phys. Lett., 29, 265 (1974).
- (35) T. Eicher and G. Frenzel, Z. Naturforsch. B, 20, 274 (1965).
- (36) P. Vouros, J. Heterocycl. Chem., 12, 21 (1975).
- (37) The sum of inductive and conjugative influences of SO₂ on the $\pi_{C=C}$ orbital of dimethylthiirene 1,1-dioxide amounts to -0.56 eV.⁹ This value is smaller than the corresponding sum of calculated influences of SO₂ on π_1 of 2,3-diphenylthiirene 1,1-dioxide, which is -0.89 eV (cf. Figure 5) because of the higher conjugative effect in the dimethyl derivative.
- (38) The calculated π charge transfer from PhC—CPh to M (using the CNDO/S procedure) is (in 10⁻³ e) for 6 8.2, for 7 245.4, for 8 344.4, for 9 82.2, and for 10 81.4
- (39) The CNDO/S conjugation energies (aromaticities) amount (in kcal/mol) to -4.55 for 6, -53.76 for 7, -52.84 for 8, -22.05 for 9, and -21.84 for 10.

"Increased Valence" When the Octet Rule Is Obeyed. A Reply to a Challenge

Richard D. Harcourt

Contribution from the Department of Physical Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia. Received November 27, 1977

Abstract: Consideration is given to the use of the term "increased valence" when it is applied to the valence structure Y-A·B (1) relative to the standard valence-bond structure Y-A B (11), each structure having a set of four electrons and three overlapping atomic orbitals (y, a, and b). One type of wave function for I is $|y\bar{a}\psi_{ab}\bar{b}| + |\bar{y}\bar{a}\bar{\psi}_{ab}b|$ with $\psi_{ab} = a + kb$ and $0 < k < \infty$. From this wave function, it is deduced that a maximum of three electrons may simultaneously participate in bonding for I, and that for $1 < k < \infty$, the valence for A in I may exceed its value of unity in II. Therefore on at least two counts, I may be designated as an "increased-valence" structure relative to II. This point of view is contrasted with that expressed recently by Halgren et al. (ref 2).

The use of the term "increased valence" when it is applied to the general valence structure 1 has recently been questioned.² This structure may be constructed^{1,3c-e} whenever four electrons are distributed among three overlapping atomic orbitals centered on the three atoms Y, A, and B. For example, each set of four $2p\pi$ and $2p\pi'$ electrons of N₂O has the electron distribution of 1 in the valence structure 2. Although ten electrons seem somehow to be involved in bonding to the central nitrogen atom, an apparent 3a-d rather than a real violation of the octet rule occurs in a minimal basis set description of 2. Here I shall demonstrate that the designation of "increased valence" for valence structures 1 and 2 is appropriate in two senses, namely, (1) that more electrons participate in bonding for 1 and 2 than occur in the Lewis valence-bond structures 3 and 4 with electron-pair bonds, and (2) that the valence of the A atom in 1 and 2 can exceed that of unity and four for the same atom in 3 and 4.

To demonstrate these propositions, we shall use Heitler-London rather than localized molecular orbital procedures to describe the YA bonding for 1 and 3, thereby avoiding an effect that is associated⁴ with electron spin and the overutilization of the A-atom atomic orbital when localized molecular orbitals (or bond orbitals) are used to describe the YA and AB bonding electrons of 1. From an examination of the Heitler-London type wave function for 1, Halgren et al.² have attempted to demonstrate the converse of the second proposition.

For valence structures 3 and 1, the S = 0 wave functions are given by^{5,6} eq 1 and 2, respectively, in which y, a, and b are the overlapping atomic orbitals centered on the Y, A, and B atoms, and $\psi_{ab} = (a + kb)/(1 + k^2)^{1/2}$ is the AB bonding molecular orbital that accommodates the electron of the AB bond of 1. The Slater determinants of eq 1 and 2 generate the electron spin distributions ($x \equiv s_z = +\frac{1}{2}$, $o \equiv s_z = -\frac{1}{2}$) of 5 and 6 for

$$\dot{Y} \stackrel{a}{A} \stackrel{a}{B} \stackrel{b}{Y} \stackrel{a}{A} \stackrel{b}{B} \stackrel{b}{Y} \stackrel{a}{A} \stackrel{b}{B} \stackrel{b}{Y} \stackrel{a}{A} \times \stackrel{b}{B} \stackrel{b}{Y} \stackrel{a}{A} \circ \stackrel{b}{B}$$

$$5a \quad 5b \quad 6a \quad 6b$$

$$: \overset{b}{\underline{N}} \stackrel{b}{\underline{N}} \stackrel{b}{\underline{N}} \stackrel{c}{\underline{N}} \stackrel{c}{\underline{$$

0002-7863/78/1500-8060\$01.00/0

© 1978 American Chemical Society